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ABSTRACT: Pigs suffer up to 50% embryonic and 
fetal loss during gestation and exhibit the most severe 
naturally occurring intrauterine growth retardation 
among livestock species. Placental insufficiency is a 
major factor contributing to suboptimal reproductive 
performance and reduced birth weights of pigs. En-
hancement of placental growth and function through 
nutritional management offers an effective solution to 
improving embryonic and fetal survival and growth. We 
discovered an unusual abundance of the arginine fam-
ily of AA in porcine allantoic fluid (a reservoir of nu-
trients) during early gestation, when placental growth 
is most rapid. Arginine is metabolized to ornithine, 
proline, and nitric oxide, and these compounds possess 
a plethora of physiological functions. Nitric oxide is a 
vasodilator and angiogenic factor, whereas both orni-
thine and proline are substrates for placental synthesis 
of polyamines, which are key regulators of protein syn-

thesis and angiogenesis. Additionally, arginine, leucine, 
glutamine, and proline activate the mammalian target 
of rapamycin cell-signaling pathway to enhance protein 
synthesis and cell proliferation in placentae. To trans-
late basic research on AA biochemistry and nutrition 
into application, dietary supplementation with 0.83% 
l-arginine to gilts on d 14 to 28 or d 30 to 114 of ges-
tation increased the number and litter birth weight of 
live-born piglets. In addition, supplementing the gesta-
tion diet with 0.4% l-arginine plus 0.6% l-glutamine 
enhanced the efficiency of nutrient utilization, reduced 
variation in piglet birth weight, and increased litter 
birth weight. By regulating syntheses of nitric oxide, 
polyamines, and proteins, functional AA stimulate pla-
cental growth and the transfer of nutrients from moth-
er to embryo or fetus to promote conceptus survival, 
growth, and development.
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INTRODUCTION

Amino acids are not only the building blocks of 
proteins in cells, but are also precursors for synthe-
ses of nitrogenous substances [e.g., nitric oxide (NO), 
polyamines, creatine, dopamine, and catecholamines] es-
sential for whole-body homeostasis (Wu and Meininger, 
2002; Odenlund et al., 2009; Suryawan et al., 2009). 
However, the NRC (1998) takes into consideration only 
those AA that are not synthesized by pigs [the nutri-
tionally essential AA (EAA)]. Despite a marked in-
crease in conceptus (i.e., embryo-fetus and associated 
membranes) growth with advancing pregnancy (Knight 
et al., 1977), the NRC (1998) recommends the same 
dietary intake of EAA by gilts or sows during the en-
tire period of gestation. Given the current suboptimal 
feeding program for gestating swine (Kim et al., 2009), 
as well as increased prenatal mortality and severe in-
trauterine growth retardation (IUGR; Bazer et al., 
2009), there is an impetus to develop novel and effec-
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tive strategies to improve pregnancy outcomes in pigs. 
The major objectives of this article are 1) to highlight 
recent advances in the roles for functional AA (FAA) 
in improving maternal and embryonic-fetal nutrition as 
well as embryonic-fetal survival and growth, and 2) to 
discuss the underlying cellular and whole-body mecha-
nisms responsible for the beneficial effects of FAA.

LIMITATIONS TO LITTER  
SIZE IN PIGS

Litter size in mammals is a maternal trait and is 
affected by complex factors, including ovulation rate, 
uterine capacity, and embryonic and fetal survival (Wu 
et al., 2006; Distl, 2007). Among livestock species, pigs 
suffer the greatest prenatal loss (up to 50%) because 
of a suboptimal intrauterine environment (Bazer et al., 
2009), which may include inadequate uterine secretions 
and suboptimal nutrition. This problem is even more 
severe in modern, very prolific pigs than in breeds used 
in the swine industry 25 or 30 yr ago because of selec-
tion for increased ovulation rate. For example, concep-
tus survival is only 60, 50, and 45% on d 25, 36, and 44 
of gestation, respectively, in a commercial swine herd 
[i.e., Camborough Line; Pig Improvement Company, 
Hendersonville, TN (Vonnahme et al., 2002)]. Although 
prolific gilts or sows ovulate 20 to 30 oocytes, they de-
liver only 9 to 15 piglets at term (Town et al., 2005). 
The first peak of embryonic death occurs between d 12 
and 15 of gestation (i.e., the peri-implantation period), 
with most of the prenatal losses (>75%) occurring dur-
ing the first 25 or 30 d of gestation (Ford et al., 2002). 
A subsequent period of fetal mortality is d 30 to 40 of 
gestation, followed by losses on d 55 to 75 and during 
the period immediately before farrowing (Ford et al., 
2002). Fetal losses after d 30 of gestation result from 
inadequate uterine capacity (Webel and Dziuk, 1974). 
Thus, sows with large litters (>10 fetuses) have the 
greatest rate of fetal mortality (Town et al., 2005).

Pigs develop a noninvasive, diffuse type of epithelio-
chorial placentae, whose weights vary greatly among 
conceptuses within the same uterus (Bazer et al., 2008). 
The greatest restraint on litter size in pigs is placental 
development and function in early gestation and inad-
equate uterine capacity at all periods of gestation, rath-
er than simply the number of ovulations or embryos 
(Bazer et al., 1988). The problem of reduced prenatal 
survival is further exacerbated by the low heritability of 
litter size in pigs [i.e., 0.09 to 0.11 (Urban et al., 1966; 
Lund et al., 2002)]. Heritability for the number of live-
born piglets (i.e., 0.06 to 0.09) is even less than that for 
the total number of piglets born (Haley and Lee, 1992; 
Lund et al., 2002). Thus, improvement in litter size 
through animal breeding has been slow over the past 
decades (Distl, 2007). In fact, litter size in US swine in-
creased at the rate of only 0.052 pigs/yr between 1980 
and 2000 (Johnson, 2000).

PROBLEMS OF IUGR  
IN PIG PRODUCTION

Pigs exhibit the most severe naturally occurring 
IUGR among livestock species (Wu et al., 2006). Be-
fore d 35 of gestation, porcine embryos are uniformly 
distributed within each uterine horn, and their weights 
do not differ appreciably within each litter. However, 
after d 35, uterine capacity becomes a limiting factor 
for fetal growth, even though fetuses are distributed 
relatively uniformly (Bazer et al., 1988). Rates of blood 
flow, and thus the supply of nutrients to conceptuses 
after d 30 of pregnancy, vary greatly along the length of 
the uterus of gestating swine (Père and Etienne, 2000) 
because of differences in the structure and density of its 
vasculature (Ford et al., 2002). Reduced growth of por-
cine fetuses is exacerbated by the widespread practice 
of restricted feeding programs (e.g., 2 kg of diet/d) in 
the swine industry during the entire gestation period 
to prevent excessive maternal BW gains (Kim et al., 
2009). At birth, runt piglets may weigh only one-half 
or even one-third as much as the heaviest littermates 
(Widdowson, 1971). In some litters, most or nearly all 
of the piglets have reduced birth weights (<1.1 kg), 
particularly when a part or majority of the pregnancy 
period is subjected to environmental stress (e.g., hot 
or cold temperatures or disease). Notably, key organs 
involved in nutrient digestion and utilization in runt 
pigs (e.g., small intestine and skeletal muscle) suffer 
oxidative stress and are disproportionately smaller than 
those of the larger littermates (Wang et al., 2008).

Fetal growth restriction has permanent negative 
effects on neonatal adjustment to extrauterine life, 
preweaning survival, postnatal growth, efficiency of 
feed utilization, lifetime health, tissue composition (in-
cluding protein, fat, and minerals), meat quality, repro-
ductive function, and athletic performance (Wu et al., 
2006). Most IUGR piglets die before weaning, and those 
that survive suffer permanent growth retardation. In a 
breeding study carried out between 2003 and 2009, we 
observed that IUGR piglets (<1.10-kg birth weights) 
represented 76% of preweaning deaths in pigs (Table 
1). At present, IUGR piglets are culled on farms, and 
there is no nutritional support to increase their growth 
or survival during the suckling and postweaning peri-
ods. Because increased prenatal mortality and IUGR 
remain significant problems, increasing embryonic and 
fetal growth and development is important for optimiz-
ing the efficiency of pork production.

ROLE OF THE PLACENTA 
IN EMBRYONIC AND FETAL 

DEVELOPMENT

Immediately after implantation of the conceptus, 
various genes are expressed in the trophectoderm to 
initiate placental formation (Vonnahme and Ford, 
2004). Implantation, followed by placentation, begins 
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on approximately d 15 of gestation in pigs (Geisert 
and Yelich, 1997). The placenta undergoes a rapid for-
mation of new blood vessels (i.e., angiogenesis) and 
marked growth during pregnancy (Reynolds and Red-
mer, 2001). Thus, blood vessels are clearly visible in 
porcine placentae and allantoic membranes on d 25 of 
pregnancy. Notably, the porcine placenta grows rapidly 
between d 20 and 60 of gestation, and its development 
is maximal by d 70 (Knight et al., 1977; Wu et al., 
2005), a period preceding rapid fetal growth. Placental 
angiogenesis is necessary to increase the utero-placental 
blood flow that supplies nutrients from mother to fe-
tus (Wu et al., 2004; Reynolds et al., 2006). Indeed, 
the prolific Meishan pig exhibits more vascularization 
in the placenta and has 3 to 5 more piglets per litter 
than US or European pig breeds (Vonnahme and Ford, 
2004). A well-developed placental vasculature enables 
the Meishan fetus to obtain sufficient nutrients from a 
relatively small placenta (Bazer et al., 1988), resulting 
in an increased rate of prenatal survival. Insufficient 
placental vascularization may lead to a progressive de-
terioration in placental function and a decrease in pla-
cental transfer of oxygen and nutrients to fetuses (Wu 
et al., 2006). Although no relationship exists between 
placental weight and embryonic survival before d 25 or 
30 of pregnancy, the functional capacity of placentae for 
provision of nutrients and the exchange of gases is vital 
to fetal survival, growth, and development (Reynolds et 
al., 2006; Bazer et al., 2008). Therefore, understanding 
the mechanisms that regulate placental growth, includ-
ing vascular growth and placental function, is crucial 
for improving litter size and fetal growth in pigs.

ROLES OF AA IN PLACENTAL 
GROWTH

Among nutrients, AA play the most important role in 
placental growth because they are absolutely required 
for, and activate the machinery of, protein synthesis 
in cells (Li et al., 2009a; Palii et al., 2009; Rhoads and 
Wu, 2009). Based on dietary needs for N balance or 
growth, AA were traditionally classified as nutritionally 
essential (i.e., indispensable) or nonessential (i.e., dis-
pensable; Elango et al., 2009). Essential AA are defined 
as either those AA whose carbon skeletons cannot be 
synthesized or those that are inadequately synthesized 
de novo by the body relative to needs and which must 
be provided from the diet to meet requirements (Chen 
et al., 2009; Wu, 2009). Nonessential AA are those AA 
that can be synthesized de novo in adequate amounts 
by the body to meet requirements (Baker, 2009). Con-
ditionally essential AA are those that normally can 
be synthesized in adequate amounts by the organism, 
but which must be provided from the diet to meet 
needs under conditions in which rates of utilization are 
greater than rates of synthesis. Recent research has led 
to the development of FAA, which are defined as AA 
that can regulate key metabolic pathways to benefit 
the survival, growth, development, reproduction, and 

health of animals and humans (Wu, 2009). Functional 
AA (e.g., arginine, cysteine, glutamine, leucine, proline, 
and tryptophan) can be either EAA or nonessential AA 
(Kim and Wu, 2009; Stipanuk et al., 2009; Tan et al., 
2009a,b).

A growing body of evidence supports the idea that 
NO and polyamines (i.e., putrescine, spermidine, and 
spermine), which are products of arginine catabolism, 
play important roles in placental growth (Wu et al., 
2009). Arginine stimulates placental NO production by 
enhancing expression of guanosine triphosphate cyclo-
hydrolase I, the first and rate-controlling enzyme in the 
synthesis of tetrahydrobiopterin (an essential cofactor 
for NO synthase; Figure 1). Additionally, glutathione, 
synthesized from glutamate, glycine, and cysteine, is 
the major antioxidative peptide in the conceptus and is 
abundant in uterine fluid (Gao et al., 2009e). Transport 
of AA requires multiple specific transporters (Grillo et 
al., 2008), whose expression in conceptuses increases 

Table 1. Litter size, birth weights, and preweaning 
mortality of pigs1 

Variable Value2

Litter size, No. of gilts 132
Total piglets born, No. 1,468
Piglets born alive, No. 1,340
Piglets born dead, No. 128
Piglets born per litter, No. 11.12
Piglets born alive per litter, No. 10.15
Piglets born dead per litter, No. 0.97
Average birth wt of all piglets born, kg 1.35
Average birth wt of piglets born alive, kg 1.37
Piglets born dead, % 8.7
Piglets born alive, % 91.3
Proportion (%) of piglets in ranges of birth wt, kg  
  0.50 to 0.69 3.0
  0.70 to 0.89 7.4
  0.90 to 1.09 13.2
  1.10 to 1.29 31.4
  1.30 to 1.49 27.8
  1.50 to 1.69 14.3
  1.70 to 2.09 2.9
Preweaning death, % of all piglets born alive 11.5

1Gilts (Yorkshire × Landrace dams and Duroc × Hampshire sire) 
were bred at 8 mo of age and fed 2 kg daily of a corn- and soybean 
meal-based diet. The diet ingredients (%) were as follows: corn grain, 
80.4; soybean meal (48.5% CP), 10.0; alfalfa meal, 5.00; dicalcium 
phosphate, 2.20; potassium chloride, 0.75; limestone, 0.50; soybean oil, 
0.50; salt, 0.35; mineral premix, 0.10; vitamin premix, 0.20. This diet 
provided 3,175 kcal of ME/kg and the following nutrients (% of diet; 
as-fed basis): DM, 89.4; CP, 12.4; alanine, 0.76; arginine, 0.70; aspar-
agine, 0.59; aspartate, 0.71; cysteine, 0.21; glutamate, 1.02; glutamine, 
1.19; glycine, 0.55; histidine, 0.31; isoleucine, 0.52; leucine, 1.13; lysine, 
0.57; methionine, 0.22; phenylalanine, 0.57; proline, 1.08; serine, 0.52; 
threonine, 0.48; tryptophan, 0.14; tyrosine, 0.43; valine, 0.63. The con-
tent of minerals and vitamins per kilogram of complete diet (as-fed 
basis) was as follows: calcium, 8.1 g; phosphorus, 7.1 g; manganese, 
46.7 mg; iron, 75 mg; zinc, 103.8 mg; copper, 9.5 mg; iodine, 0.72 mg; 
selenium, 0.23 mg; vitamin A, 7,556 IU; cholecalciferol, 825 IU; vita-
min E, 61.9 IU; vitamin K, 4.4 IU; vitamin B12, 54.9 μg; riboflavin, 
13.7 mg; niacin, 54.9 mg; choline, 1,650 mg.

2Data are derived from analysis of litters born at the Texas A&M 
University Swine Center between 2003 and 2009. Intrauterine growth 
retardation piglets (<1.10 kg at birth) represented 76% of preweaning 
deaths.
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with gestation (Gao et al., 2009a,b). Of particular note, 
IUGR is associated with impaired transport of basic, 
neutral, and acidic AA by placentae (Regnault et al., 
2005; Wu et al., 2008). Thus, maternal protein nutri-
tion, which reduces AA availability in the conceptus 
(Wu et al., 1998a,b), greatly affects embryonic and fetal 
survival in pigs (Pond et al., 1969; 1981). Along with 
IGF, vascular endothelial growth factors, and other 
growth factors (Bazer et al., 2009), NO and polyamines 
are crucial for angiogenesis, embryogenesis, placental 
trophoblast growth, uteroplacental blood flow, and 
transfer of nutrients from mother to fetus, as well as 
fetal growth and development (Wu et al., 2006; Wu and 
Meininger, 2009).

We discovered an unusually large abundance of argi-
nine in porcine allantoic fluid during early gestation 
(Wu et al., 1996). Indeed, arginine and ornithine ac-
count for 50 and 55% of the total α-AA nitrogen in 
porcine allantoic fluid on d 40 and 45 of gestation, re-
spectively. Similarly, the arginine family of AA is also 
very abundant in ovine allantoic fluid (e.g., 10 mM 
citrulline and 25 mM glutamine at d 60; Kwon et al., 
2003). These novel and intriguing observations raised 
important questions regarding the biological role for 
arginine in the growth and development of mamma-
lian conceptuses. In support of this view, we found that 
rates of NO and polyamine synthesis in both porcine 
and ovine placentae were greatest during early gesta-
tion, when placental growth is most rapid (Kwon et al., 
2004; Wu et al., 2005; Gao et al., 2009c). We hypoth-
esized, based on these findings, that impaired placental 
growth, including vascular growth, or placental func-
tion can result from reduced placental synthesis of NO 
and polyamines, thereby contributing to IUGR in both 
underfed and overfed dams (Wu et al., 2004).

ROLES OF AA IN FETAL MUSCLE  
AND ADIPOSE TISSUE GROWTH

There is evidence that maternal protein nutrition 
during gestation can affect postnatal muscle growth 
and intramuscular fat content in pigs (Rehfeldt et al., 
2004). Myocytes and adipocytes are derived from a 
common mesenchymal precursor (Sordella et al., 2003); 
therefore, excessive amounts of adipose tissue are devel-
oped at the expense of skeletal muscle when embryonic 
myogenesis is impaired (Kablar et al., 2003). There are 
2 developing muscle fibers in fetal pigs: 1) primary fi-
bers, formed by the rapid fusion of primary myoblasts 
between d 25 and 50 of gestation, and 2) secondary 
fibers, formed on the surface of primary fibers between 
approximately d 50 and 90 of gestation (Handel and 
Stickland, 1987). The numbers of secondary muscle fi-
bers, but not primary muscle fibers, are affected by the 
uterine environment (Dwyer et al., 1994). Because the 
total number of muscle fibers is fixed at birth, their 
prenatal development affects the postnatal growth of 
skeletal muscle (Nissen et al., 2003). The differences in 
prenatal and postnatal growth rates between IUGR pig-
lets and normal litter mates correlate with a smaller ra-
tio of secondary to primary muscle fibers and a smaller 
size of the fibers in IUGR pigs (Handel and Stickland, 
1987). Abnormal metabolic regulation of intracellular 
protein turnover, adipogenesis, and mitochondrial bio-
genesis is likely a major factor responsible for reduced 
protein deposition in skeletal muscle and increased fat 
accretion in IUGR fetuses or offspring. In this regard, 
it is noteworthy that recent results of proteomics stud-
ies indicate that newborn IUGR piglets have a greater 
abundance of proteasome (i.e., the major protease for 
nonlysosomal protein degradation) in skeletal muscle 
and liver, but less eukaryotic translation initiation fac-
tor 3, a key requirement for protein synthesis, in skel-
etal muscle compared with piglets with normal birth 
weights (Wang et al., 2008).

Polyamines are necessary for both proliferation and 
differentiation of cells (Montanez et al. 2008; Flynn et 
al., 2009) and likely mediate growth and development 
of fetal muscle fibers and adipocytes (Figure 2). Con-
sistent with this view, we noted that concentrations of 
arginine, ornithine, proline, glutamine, and polyamines 
were reduced substantially in skeletal muscle of IUGR 
fetal pigs compared with littermates of average BW 
(Table 2). Similarly, concentrations of proline were 
much less in the allantoic and amniotic fluids of IUGR 
fetal pigs than in their normal counterparts (Wu et 
al., 2008). Emerging evidence shows that physiological 
concentrations of NO inhibit the growth of white adi-
pocytes (Fu et al., 2005; Jobgen et al., 2006) and stimu-
late the oxidation of fatty acids and glucose in muscle 
(Jobgen et al., 2009a; Tan et al., 2009b). In addition 
to NO and polyamines, arginine and other FAA (e.g., 
glutamine, leucine, and proline) may regulate embry-
onic and fetal muscle growth and development (Wu et 
al., 2008; Gao et al., 2009c,d) via cell signaling through 

Figure 1. Tetrahydrobiopterin biosynthesis in porcine placentae 
via the de novo pathway. The plus sign (+) denotes enhancement of 
guanosine triphosphate (GTP) cyclohydrolase-I protein expression by 
arginine. Guanosine triphosphate cyclohydrolase I is the first and rate-
controlling enzyme in the conversion of GTP into tetrahydrobiopterin 
[an essential cofactor for nitric oxide (NO) synthesis from l-arginine]. 
NOS = nitric oxide synthase; NADP = NAD phosphate; NADPH = 
reduced NAD phosphate.
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the mammalian target of rapamycin (now known as 
FKBP12-rapamycin complex-associated protein 1; Liao 
et al., 2008). In addition, arginine promotes the growth 
of skeletal muscle and reduces accretion of white adi-
pose tissue (Jobgen et al., 2009b; Nall et al., 2009). 
Most important, dietary supplementation with arginine 
during early gestation increased the ratio of second-
ary to primary muscle fibers in fetal pigs at d 70 of 
pregnancy (Berard et al., 2009). Conversely, decreased 
availability of arginine and NO increases the prolifera-
tion of preadipocytes and adipocytes in IUGR fetuses 
(Figure 2). Thus, arginine regulates nutrient partition-

ing to promote skeletal muscle growth over white-fat 
accretion.

IMPROVEMENT OF PREGNANCY 
OUTCOME BY FAA

As noted previously, the naturally occurring inability 
of placentae to supply an adequate amount of nutrients 
to fetuses in pigs is exacerbated further by the current 
widespread practice in the swine industry of restricted 
feeding programs to prevent excessive BW gain by gilts 
and sows during gestation (Kim et al., 2009). Although 
such a feeding regimen also can ameliorate farrowing 
difficulties and appetite reduction during lactation, 
gilts and sows cannot receive sufficient amounts of di-
etary AA to support optimal embryonic and fetal sur-
vival and growth during early to late gestation (i.e., d 
14 to 114; Mateo et al., 2007; Berard et al., 2009; Kim 
et al., 2009). Of particular interest, the current feed-
ing program for gestating swine results in inadequate 
provision of arginine from mother to fetuses (Wu et 
al., 1999). Unfortunately, the current version of NRC 
(1998) recommends little or no requirement for dietary 
arginine by gestating gilts or sows (Table 3).

Because of extensive catabolism of arginine by argi-
nase in the small intestine (Bergen and Wu, 2009), only 
60% of dietary arginine enters the portal circulation 
of pregnant gilts (Wu et al., 2007). Therefore, increas-
ing the dietary provision of arginine beyond that from 
a typical corn- and soybean meal-based diet may be 
an effective means to enhance circulating concentra-
tions and improve pregnancy outcomes in pigs. Several 
lines of experimental evidence support this hypothesis. 
First, dietary supplementation with 1.0% arginine-
HCl between d 30 and 114 of gestation increased the 
number of live-born piglets by 2 and the litter birth 

Figure 2. A possible role for nitric oxide (NO) and polyamines 
in the development of skeletal muscle cells and adipocytes. The em-
bryonic mesenchymal precursor is differentiated into myocytes and 
adipocytes under the influence of NO. Development of myocytes into 
secondary fibers is affected by NO and polyamines (products of argi-
nine). Secondary fibers further develop into skeletal muscle cells at 
birth. Deficiency of NO synthase during pregnancy favors formation of 
white adipocytes but impairs development of muscle cells.

Table 2. Concentrations of members of the arginine family of AA and activities of 
arginine metabolic enzymes in skeletal muscle of fetal pigs at d 60 of gestation1 

Variable NIUG IUGR SEM

Gastrocnemius muscle, mg 256 201* 7.2
Arginine, nmol/g of tissue 438 356* 9.5
Proline, nmol/g of tissue 520 423* 13
Ornithine, nmol/g of tissue 84 65* 4.1
Glutamine, µmol/g of tissue 4.37 3.69* 0.27
Putrescine, nmol/g of tissue 126 81* 5.8
Spermidine, nmol/g of tissue 191 128* 7.6
Spermine, nmol/g of tissue 225 174* 8.2
Tetrahydrobiopterin, nmol/g of tissue 1.20 0.77* 0.06
ODC2 activity, nmol/min per gram of tissue 2.57 1.85* 0.14
cNOS3 activity, nmol/min per gram of tissue 1.34 1.02* 0.08

1Data are means with pooled SEM (n = 6). Gilts (Yorkshire × Landrace dams and Duroc × Hampshire sire) 
were fed 2 kg daily of a corn- and soybean meal-based diet (Table 1) between d 0 and 60 of gestation. Fetal 
weights at d 60 of gestation were 126 and 94 g (SEM = 4.5 g), respectively, in the normal intrauterine growth 
(NIUG) and intrauterine growth retardation (IUGR) groups. Amino acids, polyamines, and tetrahydrobiop-
terin, as well as enzyme activities in skeletal muscle were determined using established methods (Meininger and 
Wu, 2002; Wu et al., 2005; Wu and Meininger, 2008). 

2ODC = ornithine decarboxylase.
3cNOS = constitutive nitric oxide synthase.
*P < 0.05 vs. the NIUG group, as analyzed by t-test.
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weight by 24% (Mateo et al., 2007). The arginine-to-
lysine ratio in the supplemental diet was 2.64 (Table 
3), which did not affect intestinal absorption of lysine 
or histidine (Mateo et al., 2007). An arginine-to-lysine 
ratio of greater than 3:1 in the diet would likely result 
in antagonism among basic AA and should be avoided 
in dietary formulation (Mateo et al., 2008; Wu, 2009). 
Second, dietary supplementation with 1% arginine to 
gilts or sows between d 14 and 28 of gestation increased 
the number of live-born piglets by approximately 1 at 
birth (Ramaekers et al., 2006; Campbell, 2009). Third, 
supplementation with 1% arginine between d 14 and 
28 of gestation increased the number of fetuses on d 70 
by 3 per litter (Berard et al., 2009). Similarly, dietary 
supplementation with arginine during early or midges-
tation increased embryonic survival and litter size in 
rats (Zeng et al., 2008).

Arginine may cooperate with other FAA to further 
improve the reproductive performance of pigs. One of 
the FAA is glutamine, because its uptake by the uterus 
of gestating gilts is the greatest among all the AA (Wu 
et al., 1999) and because it is an abundant AA in both 
uterine (Gao et al., 2009e) and fetal (Wu et al., 1995, 
1996) fluids. Thus, glutamine may play an important 
role in fetal nutrition and growth. This hypothesis led 
us to develop an arginine-glutamine mixture for feeding 
to gestating swine (Table 3). The rationale for supple-
mentation with both AA is that arginine and glutamine 
regulate protein synthesis by activating 1) the produc-
tion of polyamines, which are essential for gene expres-
sion and mRNA translation, and 2) the mammalian 
target of rapamycin signaling pathway (Figure 3). We 
found that adding 0.6% glutamine and 0.4% arginine to 
a corn- and soybean meal-based diet prevented the de-
cline in glutamine concentrations in gilt plasma (Table 
4) that occurred in response to dietary supplementa-
tion with only arginine between d 30 and 114 of gesta-
tion (Mateo et al., 2007). This modified diet markedly 
reduced 1) concentrations of ammonia (–29%) and urea 
(–27%) in maternal plasma (the reduction in both am-
monia and urea is an indicator of improved efficiency of 
utilization of dietary protein and AA); 2) variation in 
birth weights among either all piglets born (–27%) or 
live-born piglets (–24%; Table 4); and 3) the proportion 
of piglets with birth weights of 0.6 to 1.29 kg (–23% for 
all piglets born and –22% for live-born piglets; Table 
5). It is important to note that dietary supplementation 
with arginine plus glutamine increased 1) the number of 
live-born piglets by 1.4 per litter; 2) litter birth weight 
for either all piglets born (+10%) or live-born piglets 
(+15%), and 3) the proportion of piglets with birth 
weights of 1.3 to 1.49 kg (+37% for all piglets born and 
+30% for live-born piglets; Tables 4 and 5). The pro-
portion of piglets with greater birth weights (1.5 to 1.69 
kg or 1.7 to 2.09 kg) did not differ between control and 
arginine plus glutamine-supplemented gilts (Table 5). 
Taken together, these results support an important role 
for FAA in improving pregnancy outcomes in pigs.

At present, little is known about the effects of sup-
plementation with arginine or other FAA on concep-
tion rates or early embryo survival in swine. There is 
evidence that interactions between stage of gestation 
and dose of arginine supplementation have critical ef-
fects on embryonic and fetal survival (De Blasio et al., 
2009). The underlying mechanisms may involve alter-
ations in 1) the development or function of corpora 
lutea; 2) the production of progesterone (X. L. Li, F. 
W. Bazer, G. A. Johnson, and G. Wu, unpublished 
data), a major hormone for maintaining pregnancy in 
mammals (Bazer et al., 2008); 3) NO signaling (Li et 

Table 3. National Research Council-recommended re-
quirements of DM, CP, energy, and AA for gestating 
gilts and use of an arginine-supplemented diet to im-
prove litter size and fetal growth1 

Nutrient NRC value2 Arginine diet3

DM, % of diet 90.0 89.3
CP, % of diet 12.8 12.2
ME, kcal/kg 3,265 3,110
AA, % of diet    
EAA4 2.97 4.66
  Histidine 0.18 0.33
  Isoleucine 0.32 0.51
  Leucine 0.49 1.17
  Lysine 0.57 0.58
  Methionine 0.15 0.18
  Phenylalanine 0.32 0.62
  Threonine 0.45 0.49
  Tryptophan 0.11 0.13
  Valine 0.38 0.65
NEAA5 0.48 8.70
  Alanine 0.00 0.78
  Arginine 0.03 1.53
  Asparagine 0.00 0.58
  Aspartate 0.00 0.76
  Cysteine 0.23 0.23
  Glutamate 0.00 1.07
  Glutamine 0.00 1.22
  Glycine 0.00 0.55
  Proline 0.00 1.03
  Serine 0.00 0.50
  Tyrosine 0.22 0.45

1All values are expressed on an as-fed basis.
2NRC (1998) for gilts weighing 150 kg at breeding and gaining 45 kg 

during the entire period of gestation. NRC-recommended requirements 
of arginine were 0.06 and 0.00% of the diet, respectively, for sows with 
BW of 125 and 175 kg at breeding.

3From Mateo et al. (2007). The BW of gilts at breeding was 155 
kg. A corn- and soybean meal-based diet (containing 0.70% argin-
ine) was supplemented with 1.0% l-arginine-HCl (equivalent to 0.83% 
l-arginine) between d 30 and 114 of gestation. Asparagine plus as-
partate and glutamine plus glutamate in the arginine diet were ana-
lyzed by HPLC after acid hydrolysis (Wu et al., 1999). The ratios of 
asparagine:aspartate and glutamine:glutamate in the diet were deter-
mined using a bioassay method, which involved incubation of 50 mg of 
a finely ground sample or 50 mg of water (blank) with 2.5 mL of por-
cine gastric fluid (2 h at 37°C) and, after neutralization, with 5 mL of 
porcine small-intestinal luminal fluid (4 h at 37°C). Porcine gastric and 
small-intestinal luminal fluids were obtained from 12-h food-deprived 
35-d-old pigs weaned at 21 d of age. Molecular weights of intact AA 
were used for the calculation of AA content in the diet.

4EAA = nutritionally essential AA.
5NEAA = nutritionally nonessential AA.
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al., 2009b); and 4) cellular redox state (Jobgen et al., 
2009a). Without doubt, an increase in the number of 
live-born pigs will markedly reduce production costs as-
sociated with reproduction and lactation in dams. Ad-
ditionally, a reduction in the number of IUGR piglets 
will greatly improve the management of neonatal pigs 
and maximize preweaning survival and growth. Our 
findings provide a compelling basis for revising the cur-
rent NRC (1998)-recommended requirements for AA, 
including arginine, glutamine, and proline, of gestating 
gilts and sows.

Conclusion and Perspectives

Placental insufficiency is a major factor contributing 
to IUGR in pigs (Vallet et al., 2002). The underlying 
mechanisms are likely complex but may include inad-
equate or disproportionate amounts of AA available to 
the conceptus. Multiple and interacting signal transduc-
tion pathways in the conceptus are crucial for control 
of cell attachment and migration (key events in the ini-
tiation of implantation), as well as cellular growth and 
proliferation through regulation of intracellular protein 
turnover. Several of these pathways are regulated by 
AA, their metabolites (including NO, polyamines, and 
glutathione), or both. Thus, dietary supplementation 
with arginine to gilts or sows increases litter size and 
litter birth weight, and its combination with other FAA 

(e.g., glutamine, leucine, and proline) can reduce varia-
tion in birth weights of piglets. To date, the biochemi-
cal mechanisms responsible for the effects of AA are 

Figure 3. An important role for functional AA in regulating pro-
tein synthesis in porcine placentae. Polyamines are key regulators of 
DNA and protein synthesis in cells. Arginine is metabolized to orni-
thine and proline in extraplacental tissues (EPT). In placentae, proline 
is degraded to ornithine, which is utilized for polyamine synthesis via 
ornithine decarboxylase (ODC). Expression of ODC is stimulated by 
glutamine. In addition, protein synthesis is regulated by the mam-
malian target of rapamycin (mTOR) signaling pathway, which is acti-
vated by arginine, glutamine, leucine, and proline. Selective activation 
of the machinery for polyamine and protein syntheses by functional 
AA may provide a novel and effective mechanism to enhance placental 
growth and development. Arg = l-arginine; Leu = l-leucine; Pro = 
l-proline.

Table 4. Concentrations of AA in maternal plasma and reproductive performance of 
gilts fed diets without or supplemented with functional AA (FAA)1 

Variable
Control2  
(n = 32)

FAA3 
(n = 30)

Pooled 
SEM

Arginine concentrations in maternal plasma, µM 202 285* 10
Glutamine concentrations in maternal plasma, µM 380 392 18
Proline concentrations in maternal plasma, µM 283 334* 15
Ornithine concentrations in maternal plasma, µM 81 133* 6.7
Lysine concentrations in maternal plasma, µM 128 126 5.5
Ammonia concentrations in maternal plasma, µM 76 54* 4.2
Urea concentrations in maternal plasma, mM 2.09 1.52* 0.12
Total piglets born per litter, No. 11.03 11.90* 0.40
Total piglets born alive per litter, No. 9.91 11.33* 0.33
Average birth wt of all piglets born, kg 1.35 1.36 0.02
Average birth wt of all piglets born alive, kg 1.37 1.37 0.02
Total litter wt at birth for all piglets born, kg 14.6 16.0* 0.36
Total litter wt at birth for all live piglets, kg 13.4 15.4* 0.32
Piglets born dead per litter, No. 1.13 0.57* 0.12
Variation in birth wt among all piglets born,4 % 17.3 12.7* 0.58
Variation in birth wt among all piglets born alive,4 % 15.1 11.5* 0.53

1Data are means with pooled SEM. Supplemental AA were products of Ajinomoto Co. Inc. (Tokyo, Japan). 
All pregnant gilts (Yorkshire × Landrace dams and Duroc × Hampshire sire) were fed 2 kg daily of a corn- 
and soybean meal-based diet (Mateo et al., 2007) in 2 equal meals at 0700 and 1800 h. The composition of AA 
in the basal diet (containing 0.70% arginine and 1.22% glutamine on an as-fed basis) is given in Table 3. The 
BW of gilts at breeding was 114 ± 1.6 kg, n = 62). Blood samples (approximately 0.1 mL) were obtained from 
the ear vein of gilts at d 110 of gestation at 2 h after feeding for analysis of metabolites in plasma (Jobgen et 
al., 2008). Duration of gestation did not differ (P > 0.05) between control and FAA-supplemented gilts (114 
± 0.2 d, n = 62).

2l-Alanine (31 g; isonitrogenous control) was added to the 2-kg basal diet as top dressing between d 30 and 
114 of gestation.

3A mixture of 8 g of l-arginine and 12 g of l-glutamine was added to the 2-kg basal diet as top dressing 
between d 30 and 114 of gestation. This FAA diet contained 1.1% arginine and 1.8% glutamine.

4CV (SD/mean × 100%).
*P < 0.05 vs. the control group, as analyzed by unpaired t-test.
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largely unknown and are being studied primarily by 
standard low-output methods, such as analysis of me-
tabolites, reverse transcription-PCR, and Western blot 
analysis (Hu et al., 2008a; Phang et al., 2008; Haynes et 
al., 2009; Yin et al., 2009). The recent development of 
high-output approaches (e.g., genomics, epigenomics, 
proteomics, and metabolomics) is transforming nutri-
tion research (Hu et al., 2008b; Yan and He, 2008; He 
et al., 2009; Wang et al., 2009a,b). These powerful dis-
covery tools can be used to rapidly advance our under-
standing of how dietary AA regulate gene and protein 
expression in the conceptus via cellular and molecular 
mechanisms, including epigenetics, to affect embryonic 
and fetal survival as well as placental and fetal growth. 
This new knowledge will greatly facilitate translation 
of basic research on AA biochemistry and physiology 
into feeding practice to further improve the reproduc-
tive performance of swine.
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